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Abstract. This article defines a framework for programming, in Java,
smart contracts over blockchain. The framework consists of a restricted
runtime and of an instrumentation procedure for classes that need to
be persisted to blockchain, for payable contract methods and for gas
metering. This instrumentation abstracts away any difference between
storage and memory data location, which is at the origin of tricky se-
mantical issues and bugs in Solidity. Moreover, this framework allows one
to leverage, in a transparent way, existing expertise and tools from the
Java world, in order to build smart contracts in a simple and comfortable
way. The resulting contracts are strongly-typed and work over a shared
storage, that allows simple intercontract communication. This makes it
easy to install libraries or microservices in blockchain.

1 Introduction

The blockchain can be seen as a distributed, decentralized collection of trans-
actions. These can be monetary transfers, as in Bitcoin [16], or much more in-
volved state transitions of a sort of world computer, as in Ethereum. In the latter
case, data structures, that form the state of contracts, are held in blockchain in
successive versions, stored after each transaction. In both cases, the semantics
of transactions is given in a programming language that specifies prerequisites
and outcome. Bitcoin uses a limited, low-level, Turing incomplete bytecode lan-
guage that focus on cryptographic primitives, has no loops and no heap mem-
ory [12]. Instead, Ethereum uses a more involved, Turing-complete bytecode lan-
guage for the Ethereum Virtual Machine (EVM), with loops and heap-allocated
objects [13]. A few high-level programming languages compile into the EVM
bytecode. In particular, Solidity [9] is the reference programming language for
Ethereum, focused on smart contracts. These are objects in blockchain whose
methods specify the semantics of blockchain transactions. Their execution re-
quires to pay an amount of money (gas) proportional to the number of steps
that they will execute.

Solidity was revolutionary, as it showed that the blockchain can store much
more than monetary transfers. However, its semantics has issues reflecting the
fact that the state of contracts is stored (persisted) in blockchain (storage).
Hence, assignments have a by-value semantics on storage and a by-reference se-
mantics and cheaper cost on RAM-allocated data (memory). Programmers find
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this confusing, also because the classification into storage and memory depends
on the variable (locals tend to live in memory, while contract fields in storage),
on the size of the data (larger locals are held in storage) and on the explicit
storage modifier. This confusion makes learning Solidity hard and leads to un-
settling bugs [15]. Moreover, the by-value semantics introduces inefficiencies.
Solidity has a weak type-system: contracts are just untyped blockchain ad-
dresses, with no possibility of compile-time or run-time check of their class. It
has a very limited notion of library, that is just a collection of static methods, a
sort of global, memoryless singleton. It misses every high-level treat of modern
object-oriented languages, such as exception handling, inner classes, lambda ex-
pressions, method references and generics. It ships with a very limited support
library, in comparison for instance to Java. It does not have the large toolbelt
of other programming languages (IDEs, debuggers, profilers, static analysers).
It cannot even be said that such semantical issues and the relative simplicity
of Solidity guarantee security: Solidity does allow the definition of dangerous
contracts, for instance because of its re-entrancy issue, that led to the infamous
DAO attack of 2016 [17], draining $50M from an Ethereum smart contract.
This article presents a framework for smart contracts, with these advantages:

— it allows one to use the Java programming language. its large toolbelt and
its features (exception handling, inner classes, lambda expressions, method
references, generics...) for writing smart contracts. Java is a well-known
language, which reduces the learning curve for new programmers of smart
contracts;

— it minimizes the difference between storage and memory variables, by always
using the standard by-reference semantics of Java for reference type variables
and by lazily loading data from storage;

— it allows one to create smart contracts that share objects in a global heap,
persisted to blockchain. This allows new forms of communication between
contracts and the development of real libraries in blockchain;

— it allows clients to run smart contracts in the Java Virtual Machine (JVM),
a reliable and highly optimised tool, implementing the most advanced tech-
niques for fast execution of bytecode and for garbage collection [14].

This article describes the working principles of what can be described as a Java
framework since it uses Java and its toolbelt as development language for smart
contracts. Instead, its actual implementation is starting now and will be sub-
ject of future work, together with the evaluation of its actual usefulness and
scalability.

Sec. 2 introduces the framework, with an example of a Java smart contract,
and describes how jars are stored in blockchain. Sec. 3 presents storage refer-
ences, transactions and the primitives that the blockchain must provide for them.
Sec. 4 presents storage classes and their instrumentation that allows one to use
them as normal Java classes in RAM. Sec. 5 shows the implementation and
instrumentation of contract classes. Sec. 6 describes how gas metering works.
Sec. 7 discusses how code instrumentation can be performed. Sec. 8 concludes.



AiliA SA
‘Weinberghohe 27
Patent Pending 6300 Zug, CH

2 Takamaka: A Java Framework for Smart Contracts

Takamaka! is a Java framework for programming smart contracts. It is a subset
of Java, whose runtime takamaka. jar includes classes for storage and contracts
(Sec. 4 and 5). It uses white-listed deterministic methods from the standard
Java library. Hence, for instance, methods for collections are white-listed, but
System.currentTimeMillis is not, as well as most methods from the reflection
APIT that could be used to circumvent the white-list. Methods for concurrency are
not white-listed since they could lead to non-determinism. Methods that access
files or network are not white-listed, since their behaviour is client-dependent
and might hang. Currently, programmers cannot use static fields nor put arrays
in storage classes.
Takamaka software is written, verified and executed as follows:

Development: Takamaka applications are developed as normal Java applica-
tions, including takamaka.jar in their build path, with no special devel-
opment environment: any IDE or command-line compiler can be used. The
result, in any case, is the app.jar archive of the application.

Verification: The classes in app. jar get verified, in order, for instance, to check
that they only refer to white-listed methods. Moreover, this step verifies
that storage classes have components of an allowed type (Sec. 4) and other
structural constraints of contracts.

Installation: The archive app. jar gets installed in blockchain, by triggering a
transaction that installs a jar.

Instrumentation: The classes in app.jar get instrumented (Sec. 4, 5 and 6).
In particular, storage classes undergo a tranformation (at bytecode level)
that allows their objects to be lazily loaded in RAM during the execution
of a transaction and their updates to be persisted to blockchain at its end.
Moreover, a gas metering aspect is injected in code.

Execution: Classes in app. jar, including contract classes, get instantiated by
transactions that execute their constructors. The resulting storage references
can then be used as receivers or parameters of other transactions.

As we will see later (Sec. 7), the instrumentation can be static (before installing
the jar in the blockchain) or dynamic (before the execution of every transaction).
What follows is an example of a crowdfunding contract written in Takamaka,
literally translated from a Solidity example [8], for comparison. It allows funders
to support a campaign. Once a threshold has been reached, funds can be unlocked
for that campaign.
Its implementation consists of two Java classes. The first is Funder. java:

import takamaka.lang.Contract; // this is inside takamaka.jar
import takamaka.lang.Storage; // this as well

public class Funder extends Storage {
! Takamaka is a valley in French Réunion island, where a network of waterfalls con-

verge into a river. This is similar to Takamaka’s smart contracts, that is, distinct
objects that collaborate over a shared global heap in blockchain.
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private final Contract who;
private final int amount;

public Funder(Contract who, int amount) {
this.who = who;
this.amount = amount;
}
}

It is a funder for a campaign, i.e., a contract and the amount of money that it
devotes to the campaign. Since its instances must be persisted to blockchain, it
extends takamaka.lang.Storage. The second class is CrowdFunding. java:

import takamaka.lang.Contract; // all these are in takamaka.jar
import takamaka.lang.Payable;

import takamaka.lang.Storage;

import takamaka.util.StorageList;

public class CrowdFunding extends Contract {
private final StorageList<Campaign> campaigns = new StorageList<>();

public int newCampaign(Contract beneficiary, int goal) {
int campaignIld = campaigns.size();
campaigns.add(new Campaign(beneficiary, goal));
return campaignld;

}

public @Payable @Entry void contribute(int amount, int campaignID) {
campaigns.elementAt (campaignID) .addFunder (caller(), amount);

public boolean checkGoalReached(int campaignID) {
return campaigns.elementAt(campaignID) .payIfGoalReached();
}

private class Campaign extends Storage { // inner class
private final Contract beneficiary;
private final int fundingGoal;
private final StorageList<Funder> funders = new StorageList<>();
private int amount;

private Campaign(Contract beneficiary, int fundingGoal) {
this.beneficiary = beneficiary;
this.fundingGoal = fundingGoal;

}

private void addFunder(Contract who, int amount) {
funders.add(new Funder(who, amount)); this.amount += amount;

}

private boolean payIfGoalReached() {
if (amount >= fundingGoal) {
pay(beneficiary, amount);
amount = 0;
return true;
}
else
return false;
¥
}
}

It implements the crowdfunding coordinator contract. It guarantees that funds
for a campaign cannot be denied once its goal is reached. It allows one to start a

new campaign (method newCampaign), that keeps in its list of campaigns (line 7).
That list uses Takamaka’s StoragelList generic class, that extends Storage
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and can then be persisted to blockchain. One can contribute to a campaign
(contribute), by specifying its progressive identifier, and can check if the goal
of a campaign has been reached (checkGoalReached). A Campaign is an instance
of an inner class (line 23), so that it can reference the wrapping contract. This
allows Campaign to call method pay of the contract (line 40) to transfer a given
amount of money to a given beneficiary. That method of class Contract is
final and consequently cannot be redefined, which avoids any risk of reentrancy.
Class Campaign extends Storage (line 23) since its instances are held inside the
campaigns list (line 7) and are consequently persisted to blockchain.

Line 15 shows a @Payable QEntry contract method. When a contract calls an
@Entry method or constructor of another contract, it becomes its caller and can
send money along. Takamaka checks (statically) that @Entry methods belong
to classes that extend takamaka.lang.Contract and (dynamically, see method
entry in Sec. 5) that they are only called from a distinct contract object. In-
side @Entry methods or constructors, it is possible to call method caller, that
returns the calling contract. In general, a programmer will use @Entry when
she needs to identify the calling contract of a method, or when she wants to
receive money from it. Namely, the annotation @Payable can only be added to
an @Entry method or constructor. It means that the contract receives money
from the caller contract. In our example, if another contract calls contribute,
it must specify an amount of money for the crowdfunding contract, through
the int first parameter of contribute. Takamaka automatically transfers that
money from caller to the destination contract, at call time.

Takamaka applications, in jar format, are stored in blockchain. Namely, a
transaction can store a jar with references to its dependencies, if any. The mech-
anism is reminiscent of what Ivy or Ant do: in order to store a jar j, a transac-
tion ¢t adds j to blockchain, together with references to other transactions where
its dependencies d1, ..., d,, if any, have been previously stored in blockchain. A
reference to ¢ can then be used to store other jars that depend on j. Recursive de-
pendencies are not allowed. Dependencies can be transitively or non-transitively
resolved. This is related to the construction of the classpath for the execution of
a contract transaction (Sec. 3). Takamaka stores j in the blockchain as a tuple
(jy*dy,t1, ..., xdp,t,), where xd; is a reference to the ith jar on which j de-
pends (for instance, a reference to the transaction that stored the ith jar in the
blockchain) and ¢; is a Boolean that holds true if the dependency is transitive.

3 Storage and Transactions

The state of a smart contract consists of the values of its fields and of the objects
reachable from them, recursively. Such state is persisted to blockchain, after con-
tract creation and after the execution of a contract transaction, i.e., after the
execution of a public constructor or method of a contract. For efficiency, only the
updated portion of the state is persisted, not the full state. Distinct contracts can
share part of their state, hence a transaction on a contract can modify objects
visibile by another contract. This is expected and standard in Java and can be
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Fig. 1. The deserialisation of a storage object from blockchain and the serialisation of
its updates at the end of a transaction.

used as a form of communication between contracts on blockchain. The states
of all contracts installed on blockchain form a heap-like structure, persisted to
blockchain, called storage. References between storage objects are called storage
references and have the form: (block_number, transaction_number, progressive),
meaning that it refers to the progressiveth object instantiated during the execu-
tion of the transaction_numberth transaction inside the block_numberth block.

A transaction needs the blockchain reference *xj to a jar that provides the
classpath for its execution (Sec. 3) and a Boolean t that specifies if this jar’s de-
pendencies must be included; moreover, it needs the signature sig of the construc-
tor or method and its actual parameters pars, including the receiver for methods.
Hence, a client receives the request of a transaction as a tuple (xj, ¢, sig, pars).
Parameters can be primitive values or storage references to storage objects. The
execution of the transaction results in state updates to reachable objects includ-
ing, for constructors, those to the brand new object. At its end, the transaction
stores in blockchain a tuple (x7j,t, sig, pars, result, updates), where result is the
result for non-void methods or the brand new object for constructors. If the
transaction ends in exception, result is a description of that exception.

When a contract transaction is run, the state of the involved objects, such
as the target contract itself, is loaded in RAM, with fields that hold values that
reflect their persisted values. Fig. 1 shows how an object of class C is deseri-
alised from blockchain, given its storage reference r. Namely, Takamaka looks
for the latest update of a pseudofield @class, held in blockchain as a triple
(r,@class, C) that reports the name of the class C of the object. Then it instan-
tiates in RAM a new object of class C that corresponds to an object serialised in
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blockchain at storage reference r. Hence its field inStorage holds true and its
field storageReference holds r. Then Takamaka looks for the latest updates
of the fields of C. Fig. 1 assumes there are two: £1 of reference type and £2 of
primitive type int. They are treated differently. Namely, the value of primitive
fields, such as £2, is immediately reflected in RAM in the deserialised object.
Note that, in Fig. 1, there are two updates for field £2 of r, reflecting the his-
tory of the object, but only the latest update (r, £2,42) is used. Reference fields,
such as f£1, are lazily loaded, instead. Hence, £1 initially holds null in RAM.
As the transaction proceeds, in RAM and inside the JVM, and as soon as the
computation needs f1, it gets assigned a heap reference h’ corresponding to the
storage reference 1/, since the triple (r, £1,7’) is the latest update in blockchain
for £1. To implement this lazy loading mechanism, Takamaka uses a Boolean
field f1AlreadyLoaded. Fig. 1 assumes that the execution of the transaction
has updated f1 to a heap reference h”. At the end of its execution, all heap
updates to the state of the objects in RAM get persisted to blockchain, in an
automatic way, fully transparent to the programmer. In Fig. 1, field £2 still holds
42 but field £1 has been updated to h”. A method extractUpdates concludes
that it is enough to serialise the update to £1 in blockchain, in a triple (r, £1, ")
where 1"’ is the storage reference corresponding to the heap reference h”. Method
extractUpdates needs the previous value of each field to work, which is held in
0l1dF1 and 0ldF2.

Fields inStorage, storageReference, 01dF1, 01dF2 and f1AlreadyLoaded
are not written by the programmer. Instead, Takamaka instruments storage
classes (and hence contracts) so that they can be persisted to blockchain and
have the ability to identify updates to their fields, in an efficient way (Sec. 4). For
that, Takamaka requires storage classes to extend the takamaka.lang.Storage
class: only such classes are instrumented and their instances persisted. All up-
dates are stored in blockchain as storage updates, i.e., triples (r, f, new_value),
meaning that the field with signature f of the object whose storage reference is
r has been updated to new_value. The latter can be a Java primitive value or
a storage reference, for reference fields. Updates can be compacted, to reduce
their size in storage. Namely, updates to more fields of the same object could
use a single update entry, referring to more fields and reporting a new value for
each field. This optimization is irrelevant here and we do not discuss it further.

To support this persistence mechanism, clients must expose the blockchain as
an object accessible as Blockchain.getInstance (), with the following methods.

getCurrentTransaction() yields the current transaction being executed.
getTopmostBlock() yields the topmost block of the blockchain.

deserialize(r) yields an object o that is the deserialisation from blockchain of
storage reference r, as follows:

1. if 7 is null, this method yields null;

2. otherwise, it looks in blockchain for the latest update of a pseudofield @class
for r to a class name C. If it is not found, an exception is thrown;
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3. it looks for the most recent updates of the non-transient primitive fields
defined by C and by its superclasses. Let fi,..., f, be their values (ordered
by placing first the values of the fields of the superclasses). If the latest value
of any such field is not found, an exception is thrown;

4. it yields new C(r, f1,..., fn).

The constructor invoked at step 4 is not written by the programmer. As shown
in Sec. 4, it is instrumented after compilation and initializes all primitive fields
of 0. The fields of reference type, instead, are initialized later, on-demand.

deserializeLastUpdateFor(r, "C.f:D") yields the object o' held inside the
(fully-qualified) reference field C.£:D (i.e., field £ defined in class C and having
reference type D) of a container object whose storage reference is r, as follows:

1. it verifies that C is a storage class and throws an exception otherwise;

2. it looks in blockchain for the latest update of a pseudofield @class for r
to a class name E. That class must coincide with C or be a subtype of C;
otherwise, an exception is thrown;

3. it looks for the latest update of field C.£:D for r to a storage reference r’; if
it is not found, an exception if thrown;

4. it yields deserialize (+').

4 Storage Classes and Their Instrumentation

Storage classes extend class takamaka.lang.Storage. Since only such classes
can be persisted to blockchain, it follows that the their instance fields must be
primitive or have storage class, recursively?, or class java.lang.Object. The
latter is used to support Java generics, that are erased into java.lang.0bject.
However, Takamaka will check at run time that such objects actually have stor-
age class (see later, method recursiveExtract). Class takamaka.lang.Storage
implements the basic machinery for keeping track of the storage reference of its
instances. Namely, a storage object o, when in RAM, can be the deserialisation
of an object o already persisted to blockchain, in which case its inStorage
field holds true and its storageReference field holds the storage reference to o
(Fig. 1). But o might instead be a brand new storage object, instantiated during
the transaction being executed, and might at its end be persisted to blockchain,
if reachable. In that case, inStorage holds false and storageReference is the
storage reference that would be used for it, if ever persisted to blockchain. Hence,
takamaka.lang.Storage has two constructors, for those two alternatives:

public abstract class Storage {
protected final StorageReference storageReference;
protected final boolean inStorage;
protected final static Blockchain blockchain = Blockchain.getInstance();
private static long nextProgressive;

2 The actual implementation of Takamaka allows storage objects to have fields that

hold instances of type java.lang.String and java.math.BigInteger as well, but
this is not explained in this article, for simplicity.
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// constructor used by the programmer to build objects not yet in storage
protected C() {
this.inStorage = false;
this.storageReference = new StorageReference(
blockchain.getTopmostBlock() . getNumber (),
blockchain.getCurrentTransaction() .getNumber (),
nextProgressive++) ;

}

// constructor used by Takamaka for deserialisation from blockchain
protected C(StorageReference storageReference) {

this.inStorage = true;

this.storageReference = storageReference;

}

// Takamaka calls this to collect the updates to this object;
// it yields the storage reference used for this object in blockchain
protected StorageReference extractUpdates(Updates updates) {
if (!inStorage)
updates.add(<storageReference, "@class", getClass().getName()>);
// subclasses will override and add updates to their instance fields
return storageReference;

}

// utility method that will be used in subclasses to implement
// method eztractUpdates to recur on fields of reference type
protected final StorageReference recursiveExtract(Object s, Updates updates) {
if (s == null)
return null;
else if (s instanceof Storage)
return s.extractUpdates(updates);
else
throw new RuntimeException("storage objects must implement Storage");
}
}
Takamaka calls o.extractUpdates(updates) at the end of a contract transac-
tion, on all objects o reachable from the contract or from the parameters of
the transaction. It collects into updates the updates to o that must be per-
sisted to blockchain and yields the storage reference used for o in blockchain.
Class takamaka.lang.Storage does not define fields that belong to the state
of a storage object: subclasses will (automatically) redefine extractUpdates to
build their updates. Instead, the superclass only stores the class tag of the object,
if it is not yet in storage (line 26). This class tag will be used later, if the object
will ever be deserialised (Sec. 3). Note that subsequent uses will use the previous
stored class tag and that programmers have no primitive to store updates in the
blockchain. Hence, objects cannot change class overtime.
Programmers write storage classes as perfectly normal Java classes that ex-
tend takamaka.lang.Storage. But the code of such classes undergo an auto-
matic program instrumentation before execution, to allow:

1. the generation of updates (Sec. 3) at the end of a transaction: storage ob-
jects have instrumented fields that allow Takamaka to identify the updated
portion of their state;

2. on-demand deserialisation of storage objects accessed during a transaction.
Namely, it is theoretically possible to load in RAM the whole state of a
contract, recursively, before a transaction. But that would be impractical
and slow, since it could be very large.
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To exemplify the transformation, assume that a programmer writes:

public class C extends Storage {
private D f1;
private int f2;

public C(pars) {
// implicit call to super() here
body

}

methods
}

That class gets compiled into Java bytecode. Before its execution, Takamaka
automatically transforms it into bytecode corresponding to the following source
(this source is never explicitly defined; we report it here since it is easier to read)
that corresponds to an object whose memory layout in shown in Fig. 1:

OO0~ Uk W~

public class C extends Storage {
private D f1, oldFi;
private boolean flAlreadyLoaded;
private int f2, o0ldF2;

public C(pars) {
// implicit call to super() here
instrumented body

}

// constructor added for deserialisation from storage
public C(StorageReference storageReference, int _f2) {
super (storageReference) ;
£2 = oldF2 = _f2;
}

// method that replaces f1 read operations
private D getF1() {

ensurelLoadedF1();

return f1;

}

// method that replaces f1 write operations
private void putF1(D _f1) {
ensureLoadedF1();
f1 = _f1;
}

private void ensureLoadedF1() {
if (inStorage && !flAlreadyLoaded) {
f1 = 0ldF1 = (D) blockchain.deserializeLastUpdateFor
(storageReference, "C.f1:D");
filAlreadyLoaded = true;
}
}

public StorageReference extractUpdates(Updates updates) {
StorageReference _this = super.extractUpdates(updates);
if (!inStorage || f1 != oldF1)
updates.add(<_this, "C.f1:D", recursiveExtract(fl, updates)>);
recursiveExtract (o1dF1, updates);
if (!inStorage || f2 != oldF2)
updates.add(<_this, "C.f2:int", £2>);

return _this;

}

instrumented methods

10
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When a storage object is deserialised from storage (Fig. 1), its primitive fields
get initialized by the synthetic constructor added at line 12. Reference fields, in-
stead, hold null after deserialisation and are lazily set later, if accessed (lines 19
and 25). Consequently, accesses to reference fields, such as £1, get replaced by
calls to accessor methods, in this example to getF1/putF1, that ensure that
the field has already been loaded from blockchain. Namely, the transformation
replaces, at lines 8 and 48, bytecodes getfield C.f1:D with invokevirtual
C.getF1():D,and putfield C.f1:D with invokevirtual C.putF1():void [14].
After the transformation, the only accesses to £1 occur inside getF1/putF1. Note
that putF1 must call ensurelLoadedF1, or otherwise the previous value 01dF1
will not be set and updates to reachable locations will not be serialised later and
will be lost.

The synthetic method extractUpdates collects fields of this updated after
its creation and recurs on their value. If this was created during the transaction,
then it was not inStorage and the values of all its fields are persisted. Otherwise,
only its fields that changed their value since deserialisation must be persisted.
Note that Java does not allow programmers to redefine the semantics of ==,
hence extractUpdates will identify all updates. Method extractUpdates recurs
on both the current value of reference fields (line 40) and their original value
in blockchain (line 41). This second recursion is important since the previous
value might reach objects that became unreachable from the contract whose
transaction is being executed, but that are still rechable from other contracts
in blockchain. Their updates must be persisted or otherwise such contracts will
not see the changes.

Fields declared as transient are treated specially, since they are not part of
the persisted state of an object. Hence, the synthetic constructor for deserialisa-
tion does not receive their value and extractUpdates skips them. There is no
old version for them, since it would not be used. Hence their value gets lost at
the end of a transaction: when a subsequent transaction starts, they will appear
to have been reset.

The introduction of fields, constructor and methods to storage classes might
lead to name clashes if, for instance, a field named 0ldF1 already existed. To
avoid this, the actual instrumentation uses names that are illegal as Java iden-
tifiers but legal as Java bytecode identifiers. The details are irrelevant here.

The transformation is extended to storage classes C that extend a superclass S
distinct from takamaka.lang.Storage. Storage classes can only extend another
storage class (or takamaka.lang.Storage) hence S is also a storage class. The
only difference is that the constructor for deserialisation (line 12) will not only
receive _f2, but also the other primitive fields _fs defined in the superclasses.
Such _fs will be passed to the superclass’ constructor for deserialisation:

public C(StorageReference storageRefernce, _fs, int _f2) {
super (storageReference, _fs);

£2 = oldF2 = _f2;
}

11
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5 Class takamaka.lang.Contract and Its Instrumentation

The superclass of all contracts tracks its balance and supports logging:

public abstract class Contract extends Storage {
private BigInteger balance;
private transient Contract caller; // not kept inm blockchain
private final StorageList<String> logs = new StorageList<>();

protected final void require(boolean condition, String message) {
if ('condition)
throw new RuntimeException(message) ;

}

protected final void pay(Contract whom, int amount) {
require(whom != null, "destination contract cannot be null");
require(amount >= 0, "payed amount cannot be negative");
BigInteger amountAsBI = BigIlnteger.valueOf (amount);
require(balance.compareTo(amountAsBI) < 0, "insufficient funds");
balance = balance.subtract(amountAsBI);
whom.balance = whom.balance.add(amountAsBI);

}

protected final void entry(Contract caller) {
require(this != caller, "@Entry must be called by a distinct object");
this.caller = caller;

}

protected final void payableEntry(Contract caller, int amount) {
entry(caller);
caller.pay(this, amount);

}

protected final Contract caller() {
return caller;

}

protected final void log(String tag, Object... objects) {
logs.add(tag + ": " + Arrays.toString(objects));

}

protected final BigInteger balance() {
return balance;

) }

The balance of a contract (line 2) can be accessed through method balance
(line 38) and updated by pay (line 11), that implements intercontractual money
transfers. Field balance is persisted to blockchain by the serialisation mechanism
of Sec. 4. The same happens for field logs (line 4), that stores a list of logs
populated by method log (line 34). Method require can be used to check for
specific conditions from inside a contract.

Takamaka calls method entry (line 20) when an @Entry of a contract is
called from another contract object. Similarly, Takamaka calls payableEntry
(line 25) when a @Payable @Entry method is called. Method entry checks that
the callee (this) and the caller (caller) are distinct contract objects, then
records the caller of the callee. Method payableEntry does the same and,
moreover, transfers the given amount of money from caller to callee. Takamaka
enforces that the programmer does not call these two methods directly. Instead,
they are automatically called by code instrumentation. Namely, if a contract
Caller calls an @Entry method Callee.m(pars), Takamaka recognizes that m
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is annotated as @Entry and instruments the call into Callee.m(pars, this)
that is, it passes the caller contract this as an extra parameter to m. The same
transformation occurs for calls to @Payable @Entry methods, for which Taka-
maka verifies that pars begins with a formal parameter of type int. Let us con-
sider the code of the callee now. Takamaka instruments every @Entry method
public @Entry T m(args) { body 7} into:

public @Entry T m(args, Contract caller) {
entry(caller); body

A similar instrumentation occurs for j@Payable @Entry; methods, for which
Takamaka verifies that they actually have a first formal parameter of type int
(the amount of transferred money) and then instruments it into

public @Payable @Entry T m(int amount, args, Contract caller) {
payableEntry(caller, amount); body

6 Gas

A transaction starts when a paying contract calls an entry of another con-
tract. The caller must specify an amount of gas for the transaction. Taka-
maka will run the code of the entry, withdrawing money from the paying con-
tract, on the basis of the actual gas consumed during the execution of the
code. If all gas is consumed before the end of the transaction, an unchecked
takamaka.lang.OutOfGasError is thrown. This mechanism is implemented by
code instrumentation. Namely, before each bytecode instruction, Takamaka adds
a call to the static method takamaka.lang.Gas.tick(int amount), that de-
creases, by amount, the gas available for the transaction. If the gas becomes
negative, tick throws an OutO0fGasError. The chosen amount depends on the
instruction being instrumented, so that instructions of different execution cost
can have different gas cost.

OutOfGasErrors cannot be caught: Takamaka extends every exception ta-
ble in the code with an extra, initial handler for OutOfGasError, that simply
rethrows it. This prevents possible DOS attacks, that catch the OutOfGasError
and lead into an infinite loop when the gas expires.

7 Instrumentation and Code Verification

Most features of Takamaka are implemented by automatic code instrumentation:
persistence of storage objects, @Entry and @Payable methods and gas metering.
This can be performed in two ways.

1. After compilation, code written for Takamaka gets instrumented, statically,
by using a bytecode manipulation library such as asm [11] or bcel [10]. The
advantage is that instrumentation is performed only once. However, either
the client itself performs the instrumentation, or an external subject provides
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already instrumented code. In the latter case, the client must check that the
jars stored in blockchain have been correctly instrumented, to prevent cheat-
ing. For instance, Takamaka should verify that all instructions are preceded
by a call to Gas.tick(int amount) for the correct amount (Sec. 6). If that
is not the case, the installation of a jar should be rejected.

2. Every time a class is loaded from a jar in blockchain, its code gets dy-
namically instrumented by using the Java instrumentation API [6]. The
advantage is that a client needn’t trust the instrumentation by an external
subject. Moreover, jars in blockchain are smaller, since they are not instru-
mented. However, the cost of instrumentation must be payed repeatedly.

Some light code verification is needed in both cases. For instance, Takamaka
must check that only white-listed methods of the standard Java library are called
in the jars being installed in blockchain.

8 Conclusion

The framework described in this article allows programmers to use a well-
known and modern programming language for developing smart contracts for
blockchain. It allows one to use the large and well-known toolbelt available for
Java. It hides the distinction between storage and memory objects: the program-
mer must only extend the Storage class for the former (Sec. 4). The use of Java
for distributed objects, particulalry in the web, was at the same origin of the
language and of its security primitives. Takamaka exploits the dynamic linking
of jars and the verification guarantees of the JVM. However, it does not use the
security capabilities of Java for web development, such as the sandbox approach
for applets: white-listed methods are much more restrictive than the same sand-
box. Moreover, Java provided object serialization from its very beginning. This
is not used (and black-listed) in Takamaka. Instead, Takamaka uses a specialized
technique that serializes object updates only, to support blockchain scalability.
What this article does is completely different from the use of Java to interact
with an Ethereum node, which is already well possible with suitable libraries [7];
or from the use of Java to write an Ethereum node [2]. Instead, our work pushes
Java inside the blockchain, as its programming language. NEO [5] performs a
similar task. NEO’s smart contracts can be written in Java, C# or Python and
can only use library calls to the NEQ’s library, while Takamaka allows the use of
a white-listed set of Java library methods. NEQ’s Java contracts are a collection
of static methods that return Object or byte[] only [4]. Operations on storage
must be coded explicitly through calls to NEO’s library method Storage.Put,
while Takamaka makes this transparent to the programmer. That is, NEO uses
Java only syntactically. Aion [1] has also support for smart contracts written in
Java. The only example we could find [3] does not allow us to understand the
real features of such contracts, but Aion’s technology is evolving quickly.
Takamaka has been devised to provide the standard security guarantees of
a smart contract: determinism, since only white-listed library methods can be
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executed; termination, since gas is metered and the Out0OfGasError cannot be
caught; and isolation, since the JVM enforces that Java’s visibility modifiers are
honored. Public data can instead be read with a blockchain explorer, since it is
not natively encrypted. As in Ethereum, privacy can only be enforced by writing
smart contracts that explicitly encrypt data.

Scalability is a crucial aspect of blockchains. Compared to the Ethereum
blockchain, Takamaka uses the JVM, that is more optimised than the EVM, but
is also more heavy-weight at start-up. It is not sensible to start a JVM for each
transaction. Instead, a single JVM must execute all transactions, sequentially or
concurrently, as already proved possible by Aion. Another aspect of scalability
is the size of the blockchain itself. A distinguishing feature of Takamaka is that
it stores only the updates to storage objects. This should reduce the size of the
blockchain, compared to solutions, such as Ethereum, that store the whole state
resulting at the end of a transaction.

The implementation of the framework requires the blockchain to be equipped
with primitives to serialise and deserialise storage objects (Sec. 3). Hence, it
cannot be immediately implemented on the Ethereum blockchain. Our project
continues now with the implementation of a blockchain that provides such prim-
itives and with the actual evaluation of the framework.
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9 Why Takamaka

Takamaka is a valley in French Réunion island, where a network of water-falls
converge into a river. This is similar to Takamaka smart contracts, that is, dis-
tinct objects that collaborate over a shared global storage in the blockchain.
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